الأربعاء، 3 مايو 2023

المكونات الرئيسية للنظام الشمسي.

تسارع توسع الكون وتوسع الكون

توسع الكون هو الاسم الذي يطلق على سرعة تباعد المجرات عن بعضها البعض وعن مجرة درب التبانة، ولقد أكتشفت هذه الظاهرة عام 1998م من قبل مجموعتي بحث دوليتين.

وحاول علماء الفلك منذ آلاف السنين الإجابة على سؤال أساسي حول عمر وحجم الكون. هل الكون لانهائي، أو هل يملك الكون حواف في مكان ما؟ وهل هي موجودة دائماً، أو هل بدأت هذه الحواف بالظهور منذ بعض الوقت؟

وفي عام 1929م، اكتشف «إدوين هابل» (وهو عالم فلكي في معهد كاليفورنيا التقني) اكتشافاً مذهلاً سرعان ما أدى إلى إيجاد الإجابات العلمية لهذه الأسئلة: لقد اكتشف أن الكون يتمدد ويتسع.

وهذا التمدد لا يعني أننا يجب أن نرى بقية المجرات تتحرك مبتعدةً عنا فقط، ولكن أيضاً المراقب الموجود في مجرة أخرى عليه أن يلاحظ الشيء نفسه.

«في كون متوسع واحد، كل ملاحظ يرى نفسه في منتصف التضخم، وجميع الأشياء حولهُ تتحرك مبتعدةً عنهُ». وبهذه العبارة تشكل الأساس للنظرية الحالية عن بنية وتاريخ الكون. ويهتم علم الكونيات بدراسة بنية الكون الأساسية، والنظرية التي هيمنت على الكوزمولوجيا منذ اكتشاف «هابل» سميت بعدة أسماء، ولكن أكثرها انتشاراً يعرف بالانفجار العظيم (وهو النموذج الذي أسس لنشأة علم الفلك).

الملخص

جزء من سلسلة عن

علم الكون الفيزيائي

الانفجار العظيم

الفضاء الكوني

عمر الكون

التسلسل الزمني للانفجار العظيم

بدايات الكون

التمدد

المستقبل

التركيب

البنية

علم الفلك الرصدي

العلماء

علم الكون الفيزيائي

تصنيف

بوابة علم الكون

إن توسع أو انكماش الكون يعتمد على طبيعته وتاريخه، ومع كمية مناسبة من المادة، يمكن أن يتحول التمدد إلى تقلص وانهيار وبما أن الكون يتمدد والمجرات تتباعد عن بعضها، فإن متوسط الكثافة الكونية يتناقص، ونستطيع من معدل سرعة التوسع الحالية، أن نستنتج أن الكثافة كانت هائلة منذ ثلاثة عشرة إلى خمسة عشر مليار عام، وتبين المشاهدة أن المجرات كانت متقاربة.

تاريخ الكون ونشأة الكون

في الوقت الذي كانت فيه الكثافة مساوية لثابت بلانك كان الكون مؤلفاً من مزيج حار من الجسيمات البدائية، والتي كانت تمتلك طاقة عالية جداً.جميع الجسيمات الأولية مثل الكوارك والهايدرونات والإلكترونات والفوتونات كانت ضمن المزيج.وفي الواقع هذه الجسيمات تتحد في الغالب لتكوين وحدات أكبر كالذرات. ولكن في درجات حرارة عالية جداً تبقى هذه الجسيمات منفصلة في حالة بلازما. ومع الانفجار العظيم وبدء انتفاخ الكون الناشئ انخفضت كثافة وحرارة المزيج، وبعد جزء صغير من الثانية اتحدت الكواركات مع بعضها مكونة البروتونات والنيوترونات في عملية تسمى تخليق باريوني. بعد مضي دقائق قليلة اتحدت البروتونات والنيوترونات لتشكل أنوية الذرية في عملية تسمى التخليق النووي. وبعد مرور مئات الآلاف من السنين إتحدت هذه البروتونات والنيوترونات مع الإلكترونات مشكلة الذرّة بعملية تسمى إعادة تشكيل كوني. وبعد ذلك تجمعت المادة بفعل الجاذبية مع بعضها مشكلة المجرات والنجوم والأجرام السماوية...

خصائص الكون المتوسع

يقول البروفيسور«ايدنجتون»:((إن مثال النجوم والمجرات كنقوش مطبوعة على سطح بالون من المطاط وهو ينتفخ باستمرار، وهكذا تتباعد جميع المجرات الفضائية عن أخواتها بحركاتها الذاتية في عملية التوسع الكوني))

إن فرضية الكون المتوسع لها ثلاثة حالات ممكنة، وكل حالة تضعنا أمام تصور مختلف لنهاية الكون. هذه الحالات هي الكون المفتوح (Open universe) والكون المسطح (Flat universe) والكون المغلق (Closed universe). إذا كان الكون مفتوحاً، فسوف يستمر في التوسع إلى اللانهاية، أما إذا كان مسطحاً، فإنه أيضاً سوف يتوسع إلى اللانهاية ولكن معدل التوسع سوف ينعدم بعد زمن معين.أما الكون المغلق فإنه سوف يتوقف عن التوسع بعد زمن معين ويبدأ بالانكماش والانهيار على نفسه.وفي الحالات الثلاث فإن معدل التوسع سوف يتباطأ، والقوة التي تسبب هذا التباطؤ هي قوة الجاذبية.

ولفهم هذه الحالات الثلاث يمكن أن نفترض أن سفينة فضائية تريد الانطلاق من على سطح الأرض.إذا كانت السفينة لا تمتلك السرعة الكافية التي تمكنهامن تجاوز الجاذبية الأرضية فإنها في النهاية سوف تسقط وتتحطم.وهذا مشابه لحالة الكون المغلق.أما إذا أُعطيت السفينة السرعة الكافية فقط لتجاوز الجاذبية الأرضية، فإنها سوف تصل إلى مدار تدور فيه حول الأرض من دون السقوط عليها، وهذا هو الكون المسطح.وفي حال أعطيت السفينة أكثر من الطاقة اللازمة لتجاوز الجاذبية الأرضية، فإنها بعد خروجها من المجال الجوي سوف تمتلك دائماً سرعة زائدة بحيث تستمر في المسير وربما غادرت المجموعة الشمسية بأكملها إلى مالا نهاية (وذلك لعدم وجود أية قوى مبددة لسرعتها).

نهاية الكون

إن ملاحظات «هابل» حول توسع الكون تقترح وبشكل أكثر عمومية أن الكون يتغير مع الزمن. وكما في أغلب العناصر، فإننا نعرف عن ماضيها أكثر من معرفتنا بمستقبلها، ولكن إذا افترضنا أن النظريات الفيزيائية الحالية صحيحة عندها سوف نتمكن من توقع الكثير من الأمور حول مستقبل كوننا. هل الكون سوف يظل موجوداً دائماً أم أنه سوف ينتهي يوماً ما كما بدأ؟ ومن ناحية أُخرى، هل سوف يستمر توسع الكون إلى الأبد؟.إذا استمر الكون في الاتساع فإنه من المحتمل أن يبقى موجوداً إلى اللانهاية.وفي المقابل، إذا توقف التوسع يوماً، فإن الكون سوف يتقلص وينهار حتى يصل مرة أُخرى إلى كثافة بلانك وبعد ذلك لا نملك أي فكرة عما سيحدث.

نحن نعلم من النسبية العامة أن معدل توسع الكون يتباطأ بتأثير الجاذبية المتبادلة لجميع الأجسام بداخله.وأن استمرار التوسع إلى الأبد يعتمد على وجود كمية مادة كافية لتعكسه.إذا كانت كثافة المادة داخل الكون أقل من القيمة العاكسة فإن الكون سوف يستمر في التوسع، لكن من الناحية المقابلة، إذا كانت الكثافة أعلى من القيمة العاكسة، فإن قوة سحب الجاذبية سوف تصبح في النهاية كافية لتوقف التوسع ثم يعود الكون لينهار على نفسه ويتقلص.

إذا استمر الكون في التوسع، فإن مجموعات وعناقيد المجرات سوف تتباعد عن بعضها البعض. وفي النهاية كل مجرة سوف تكون وحيدةً في الفضاء الفارغ، ولكنها لن تبقى على ذلك، حيث تتباعد النجوم هي الأخرى عن بعضها. سوف تحرق النجوم وقودها وتنطفئ، تاركةً وراءها حجارة شديدة البرودة. هذه العملية سوف تستغرق زمناً لايمكن تصوره ولكنها سوف تحدث في النهاية. وعندها لن يبقى في الكون سوى مجموعة من العناصر الابتدائية الغير مستقرة.إن طاقة الكون سوف تتوزع بشكل غير متساوي ضمن حرارة شديدة الانخفاض، ومع استمرار توسع الكون فإن هذه الحرارة سوف تنخفض وسوف يصبح الكون أكثر خُلوُّاً وبرودة. هذا السيناريو يسمى بالموت الحراري للكون.

من ناحية أخرى، إذا امتلك الكون الكثافة الكافية للقيمة العاكسة، فإن المجرات في النهاية سوف تتحرك باتجاه بعضها البعض.وعندما تصبح قريبة إلى حدٍّ كبير فإن جميع المجرات والنجوم سوف تنهار على بعضها البعض، حتى الوصول إلى نقطة يكون عندها الكون عبارة عن المفردة من لاشيئ عدا الكثافة والحرارة الكبيرتين.وعندها تتوقف جميع النظريات الفيزيائية الحالية، ولا نستطيع التنبؤ بما سوف يحدث بعد ذلك.

اقرأ أيضاانفجار عظيم

سرعة الضوء

مجموعات وعناقيد المجرات

خط زمني للانفجار العظيم

ارتباطات خارجيةنظرية جديدة لنشأة الكون - بي بي سي العربية

توسع الكون - ملتقى الفيزيائيين العرب

 

 

سرعة الضوء 

سرعة الضوء
معلومات عامة
نظام الوحدات الدولي
الاطلاع ومراجعة البيانات على ويكي داتا
التحليل البعدي

سرعة الضوء
تظهر المسافة من الشمس إلى الأرض بالصورة المبينة بمقدار 150 مليون كيلومتر، وهو مقدار متوسط تقريبي. وتظهر الأحجام بمقدار قياسي.
يستغرق ضوء الشمس حوالي 8 دقائق و17 ثانية لقطع المسافة المتوسطة من سطح الشمس إلى الأرض.
قيم دقيقة
متر لكل ثانية 299792458.
طول بلانك لكل زمن بلانك
(أي، وحدات بلانك)
1
قيم تقريبية
كيلومتر لكل ثانية 300,000
كيلومتر لكل ساعة 1,080 مليار
ميل لكل ساعة 671 مليون
وحدة فلكية لكل يوم 173
أزمان مسير تقريبية لإشارة الضوء
المسافة الزمن
قدم واحد 1.0 نانوثانية
متر واحد 3.3 نانوثانية
من المدار الجغرافى الثابت إلى الأرض 119 ميلي ثانية
طول خط الاستواء للأرض 134 ميلي ثانية
من القمر إلى الأرض 1.3 ثانية
من الشمس إلى الأرض (وحدة فلكية واحدة) 8.3 دقيقة
من أقرب نجم إلى الشمس (1.3 فرسخ فلكي) 4.2 سنة
من أقرب مجرة (مجرة الكلب الأكبر القزمة) إلى الأرض 25,000 سنة
عبر مجرة درب التبانة 100,000 سنة
من مجرة المرأة المسلسلة (أقرب مجرة حلزونية) إلى الأرض 2.5 مليون سنة
سرعة حزمة ليزر في الهواء وتبلغ 99.97% منها في الفراغ

سرعة الضوء في الفراغ هي ثابت فيزيائي هام في العديد من مجالات الفيزياء، يرمز له في العادة بالرمز c وتساوي قيمته 299,792,458 متر لكل ثانية. تستخدم سرعة الضوء حاليا لتعريف وحدة المتر باعتبارها ثابتا فيزيائيا ومعيارا دوليا لقياس الوقت.

وهو ما يعادل بعد التقريب لثلاثة أرقام معنوية 300,000 كيلومتر في الثانية أو حوالي مليار كيلومتر لكل ساعة.

بموجب النسبية الخاصة، سرعة الضوء (أو الثابت c) هي أقصى سرعة تستطيع أن تسافر بها كل أشكال الطاقة، أو المادة، أو المعلومات في الفضاء. وهي سرعة سفر الجسيمات عديمة الكتلة ومجالاتها المتلازمة (بما في ذلك الإشعاع الكهرومغناطيسي مثل الضوء) عبر الفراغ. وهي أيضا سرعة الجاذبية (الخاصة بأمواج الجاذبية) التي تنبأت بها النظريات الحالية. وتسافر تلك الجسيمات والأمواج بالسرعة c أيا كانت سرعة المصدر والإطار المرجعي العطالي للمراقب. في نظرية النسبية، الثابت c يرابط بين المكان والزمان، ويظهر أيضا في المعادلة الشهيرة لتكافؤ المادة والطاقة E = mc2.

ينتشر الضوء في المواد الشفافة مثل الزجاج والهواء بسرعة أقل من c. تدعى النسبة بين c وبين سرعة الضوء في مادة ما v بقرينة الانكسار n لتلك المادة (n=c/v). مثال، تساوي عادة قرينة انكسار الضوء المرئي عند مروره عبر الزجاج حوالي 1.5، معنى ذلك أن الضوء يسير في الزجاج بسرعة v = c/1.5 ≈ 200,000 km/s، وللهواء تساوي قرينة الانكسار 1.0003، وبالتالي تقل سرعة الضوء المرئي في الهواء بحوالي 90 كم/ث عن c.

يظهر انتشار الضوء وغيره من الموجات الكهرومغناطيسية في كثير من الأصداء العملية بشكل آني (أو لحظي)، ولكن للمسافات الطويلة والقياسات الحساسة جدا، فإن السرعات المحدودة لتلك الموجات تكون لها تأثيرات ملحوظة. الاتصال بمسابير الفضاء البعيدة، على سبيل المثال، يمكن أن يستغرق دقائق لساعات وذلك لإيصال رسالة من الأرض إلى المركبة الفضائية، أو العكس. كما أن الضوء الذي يصلنا من النجوم يكون قد رحل عنها منذ سنوات عديدة (آلاف السنين الضوئية)، فالذي يصلنا هو صورة تلك النجوم في زمن سحيق وهو ما يسمح بدراسة تاريخ الكون من خلال النظر في مكوناته البعيدة. كما أن سرعة الضوء المحدود تضع حداً للسرعة القصوى النظرية لأجهزة الحاسب الآلي، حيث تنتقل المعلومات داخل الحاسوب من رقاقة لأخرى. وبما أن سرعة الضوء ثابتة في الأوساط المختلفة يمكن استخدامها مع زمن الطيران لقياس مسافات كبيرة بدقة عالية.

من المعروف أنه لا يوجد شيء أسرع من الضوء ولكن في السنوات الماضية تم إجراء عدة تجارب لاكتشاف ما هو أسرع وقد وجدوا أن الإلكترونات المتجاورة تدور في اتجاهات مخالفة أي أن إلكتروني المستوى الأول أحدهما يدور في إتجاه عقارب الساعة والآخر في عكس إتجاه عقارب الساعة ولو تم عكس اتجاه أحدهما فيتم عكس التالي مباشرة وفي نفس اللحظة حتى إن كان أحدهما على كوكب الأرض والآخر خارج المجرة

.

مقدمة

كان الإنسان في الماضي يعتبر أن الضوء ينتقل لحظياً بسبب سرعته العظيمة. ثم أوضح أوول رومر عام 1676 أن للضوء سرعة محدودة بدراسة الحركة الظاهرية لقمر المشتري أيو. في عام 1865 اقترح ماكسويل بأن الضوء هو موجة كهرومغناطيسية، وبالتالي ظهرت السرعة c في نظريته للكهرومغناطيسية. عام 1905 افترض ألبرت أينشتاين استقلال سرعة الضوء عن حركة المصدر لأي اطار عطالي وأثبت ثباتها، واكتشف كل العواقب المتعلقة باشتقاقه نظرية النسبية الخاصة وأوضح أن c هي ثابت طبيعي ولا تنحصر فقط في سياق الضوء والظواهر الكهرومغناطيسية. بعد قرون من القياسات المتزايدة الدقة عرفت سرعة الضوء عام 1975 بكونها تساوي 299,792,458 م/ث مع ريبة في القياس تساوي 4 أجزاء بالبليون. عام 1983 تم إعادة تعريف المتر في نظام الوحدات الدولي بأنه المسافة التي يقطعها الضوء في الفراغ خلال 1/299792458 ثانية. وبالتالي قيمة c العددية بوحدة م/ث هي الآن قيمة ثابتة بالضبط نسبة إلى تعريف المتر.

سرعة الضوء وقياس المسافات

في معظم الحالات العملية، يمكن اعتبار أن الضوء يتحرك بشكل فوري حيث أن سرعته كبيرة جدا جدا، ولكن عند قياس المسافات الطويلة كقياس بُعد نجم عنا أو في تجارب قياس الزمن الدقيقة فلا بد من أخذ سرعة الضوء في الاعتبار. فمثلا عند الاتصال بمسبار على المريخ تستغرق الإشارة عشر دقائق ويأتينا إشارته خلال 10 دقائق أخرى (بحسب موقعة بالنسبة للأرض).

وقد ابتكر الفيزيائيون والفلكيون طريقة لتسهيل قراءة المسافات بيننا وبين النجوم بسبب بعدها الكبير عنا وهي طريقة قياس المسافات بالسنة الضوئية على أساس أن سرعة الضوء في الفراغ ثابتة دائما وتبلغ نحو 300.000 كيلومتر في الثانية. فيمكننا القول بأن الشمس تبعد عنا 150 مليون كيلومتر أو القول بأن المسافة بينهما تبلغ 8 دقائق. يستغرق الضوء عند خروجه من الشمس حتى يصلنا 8 دقائق.

الضوء الذي نراه من النجوم يكون قد غادرها منذ سنوات عديدة. أي أننا عندما نشاهد نجوما أبعد إلى أبعد فإننا نشاهدها على حالها في الماضي. أقرب المجرات إلينا مجرة المرأة المسلسلة (مجرة) وهي تبعد عنا نحو 2.5 مليون سنة ضوئية.

لا يوجد في الطبيعة سرعة أكبر من سرعة الضوء، هذا ما اكتشفته النظرية النسبية لأينشتاين التي صاغها في عام 1905.

وهذه السرعة أيضا تحدد السرعة النظرية لعمل الحواسيب، حيث أن المعلومات تنتقل داخل الحاسوب كتيارات كهربية من رقاقة لأخرى. وتنتقل جميع الموجات الكهرومغناطيسية أيضا بسرعة الضوء، إذ أن الضوء نفسه عبارة عن موجات كهرومغناطيسية.

قيمة الثابت

قيمة c الدقيقة هي 299,792,458 متر في الثانية (1,079,252,848.8 كيلومتر في الساعة) في الفراغ. لاحظ أن هذه السرعة هي تعريف وليس قياس منذ أن تم توحيد الوحدات العالمية، تم تعريف المتر على أنه المسافة التي يقطعها الضوء في الفراغ خلال 1/299,792,458 من الثانية.

عند عبور الضوء خلال مواد شفافة مثل الزجاج أو الهواء تقل سرعته. النسبة بين سرعة الضوء في الفراغ وسرعته خلال مادة تسمى معامل الانكسار - Index Of Refraction. على سبيل المثال، معامل انكسار الزجاج يساوي تقريبا 1.5 , وهذا يعني أن الضوء يمر عبر الزجاج بسرعة c/1.5 ≈ 200,000 km/s. معامل انكسار الهواء هو 1.0003 , إذا فإن سرعة الضوء في الهواء أبطأ من سرعته في الفراغ c بنحو 90 km/s.

كذلك تتغير سرعة الضوء بتأثير الجاذبية ما يولد ظاهرة عدسات الجاذبية - Gravitational Lensing.

في أغلب الحالات العملية يمكن اعتبار سرعة الضوء على أنها سرعة لحظية حيث أن سرعة الضوء كبيرة جدا جدا، ولكن حين نأتي لقياس مسافات طويلة مثل بُعد النجوم عنا أو القياسات الزمنية الدقيقة فلا بد من أخذ سرعة الضوء في الاعتبار. في الاختبارات والتجارب التي تجريها مركبات فضائية على مسافات بعيدة في الفضاء الخارجي، فإن إرسال رسالة ما إلى إحدى هذه المركبات أو استقبال أشاراتها يأخذ عدة دقائق إلى ساعات بحسب بعدها عنا. فمثلا إرسال إشارة لاسلكية لتشغيل مسبار على سطح المريخ قد يستغرق نحو 10 دقائق (بحسب موقعه بالنسبة للأرض حيث يتغير باستمرار)، وتصلنا إشارة المسبار هي الأخرى بعد نحو 10 دقائق أخرى.

ونظرا لأن المسافات بين الأرض والنجوم مسافات كبيرة جدا فقد ابتكر الفيزيائيون والفلكيون طريقة لتسهيل قراءة تلك المسافات وهي قياس المسافة بالسنة الضوئية. وطبقا لذلك فنستطيع القول أن المسافة بين الأرض والشمس هي 150 مليون كيلومتر أو أن المسافة بينهما 8 دقائق.

كان أولي رومر أول من برهن أن الضوء يسير بسرعة ثابتة، وذلك في عام 1676. حيث قام بدراسة التحركات الجليه لإحدى أقمار كوكب المشتري. في عام 1865 , افترض جيمس ماكسويل أن الضوء عبارة عن موجات كهرومغناطيسية Electromagnetic waves.

إحدى نتائج قوانين الكهرومغناطيسية (مثل معادلات ماكسويل) هي أن c هي سرعة الأمواج الكهرومغناطيسية، وهي لا تتعلق بسرعة الجسم الذي يطلقها، أي أن سرعة موجة ضوئية منبعثة من جسم متحرك لا تختلف باختلاف سرعة المصدر. ستكون سرعة الضوء ثابتة (مع أن لون شعاع الضوء ستختلف، إذ سيختلف طول موجته، وهذا ما يسمى بتأثير دوبلر).

كانت استنتاجات ماكسويل المذهلة هي الصيغة التالية التي تمثل سرعة الضوء:

حيث:

c - سرعة الضوء أو الموجة الكهرومغناطيسية:μ0 - معامل النفاذية وقيمته 4π × 10-7 H/m (هنري\متر)
ε0 - معامل السماحية وقيمته 8.854187817 × 10-12 F/m (فاراد\متر)

إذا ما أضفنا إلى ذلك الاستنتاجات من النظرية النسبية يقودنا ذلك إلى أن جميع المتفرجين سوف يقيسوا سرعة الضوء بالفراغ متساوية باختلاف سرعتهم وسرعة الأجسام التي تطلق الضوء. هذا ما قد يقودنا إلى رؤية c كقيمة كونية ثابتة وأساساً للنظرية النسبية. من الجدير بالذكر أن القيمة c هي القيمة الكونية وليس سرعة الضوء، فإذا تم التلاعب بسرعة الضوء بطريقة أيٍ كانت لن تتأثر النظرية النسبية بذلك.

حسب التعريف الدارج الذي تم وضعه سنة 1983 سرعة الضوء هي بالضبط 299,792,458 متر في الثانية، تقريباً 3 × 10^8 متر في الثانية، أو 30 سنتيمتر/نانو ثانية.

العلاقة بين سرعة الضوء وطول الموجة

توضيح موجة وتعريف طول الموجة λ.

يمثل طول الموجة عادة بالحرف الإغريقي لامدا (λ). وتربط المعادلة البسيطة التالية العلاقة بين طول الموجة الضوئية وترددها وسرعتها، أي سرعة الضوء c:

حيث:

هو تردد الموجة.

سرعة تقدم الموجة الضوئية في الفراغ تساوي ، وتمثّل دائما بالحرف .

ونظرا لكون الضوء ما هو إلا موجة كهرومغناطيسية فإن هذه المعادلة تنطبق أيضا على جميع الموجات الكهرومغناطيسية، على اختلاف أنواعها من موجة راديوية (لاسلكية) أو أشعة فوق البنفسجية أو أشعة تحت الحمراء، أو موجة ميكروويف، أو أشعة سينية أو أشعة غاما.

من تلك المعادلة يمكن استنتاج تردد الموجة بمعرفة طول الموجة. فمثلا إذا كان طول موجة شعاع الاسلكي 30 سنتيمتر يكون تردده 1 جيجا هرتز.

ونلاحظ استخدام الوحدات:

  • فمثلا نقيس سرعة الضوء بالمتر/الثانية أو السنتيمتر/ ثانية،
  • ونقيس طول الموجة بالمتر وبالتالي سنتيمتر،
  • فينتج التردد 1/ثانية، أي هرتز، حيث أن 1 هرتز = 1/ثانية.

اشتقاق سرعة الضوء من معادلات ماكسويل

قام ماكسويل بتجميع أربع معادلات شهيرة في الكهرومغناطيسية هي:

إضافة لذلك فقد عمل ماكسويل على تعميم قانون أمبير للمجالات المتغيرة زمنياً وأصبحت العلاقة بالصورة

حين قام ماكسويل بحل هذه المعادلات الأربع في الفراغ وتوصل إلى الصلة الوثيقة بين سرعة الموجة الكهرومغناطيسية وبين ثابت العازلية وثابت المغناطيسية.

يمكن إعادة المعادلات السابقة على افتراض أن الضوء ينتشر في الفراغ حيث لاتوجد أي شحنات كهربائية أي أن و فتصبح بالصورة

لإيجاد معادلة الموجة يجب إيجاد المشتقة الثانية في كل من الزمن والفضاء. بداية بأخذ الالتواء لطرفي المعادلة الثالثة وبتعويض النتيجة في المعادلة الرابعة نجد أن:

من نظرية تفاضل المتجه، نعلم أن

على هذا الأساس تصبح:

وهذه معادلة موجة في ثلاثة أبعاد، وللتبسيط يمكن دراستها في بعد واحد بالشكل:

بالبحث عن حل للمعادلة الجيبية، بدلالة السرعة والطول الموجي يفترض أن تكون:

بمفاضلة هذه المعادلة مرتين نحصل على:

و:

بالتعويض عنها مرة أخرى في معادلة الموجة نجد أنها تمثل حلاً شريطة أن:

أثارت هذه النتيجة فضول آينشتين وكانت السبب الرئيس في تطويره لنظرية النسبية الخاصة.

يقول البرت اينشتين في مجلة العلوم:
سرعة الضوء إن صياغة القوانين الدقيقة للزمان والمكان كانت من نتاج ماكسويل. تخيلوا كيف كان شعوره عندما برهنت له المعادلات التفاضلية التي صاغها بأن المجالات الكهرومغناطيسية تنتشر على هيئة موجات مستقطبة، بسرعة الضوء! قلة من الناس في العالم هم تقبلوا مثل هذه التجربة.. لقد استغرق الفيزيائيون بضعة عقود لاستيعاب اكتشاف ماكسويل بشكل ملحوظ تماماً، فيالها من وثبة جريئة فرضتها عبقريته على زملائه في هذا المجال —(العلوم، مايو 24, 1940) سرعة الضوء

سرعة الضوء في المواد

تختلف سرعة الضوء خلال مروره في المواد حسب طبيعة شفافيتها حيث تصبح اقل من تلك المحسوبة في الفراغ وذلك بالعلاقة:

حيث:

n معامل انكسار الضوء في المادة أكبر من الواحد لغير الفراغ،
εr معامل السماحية النسبي للمادة أكبر من الواحد لغير الفراغ،
μr معامل النفاذية النسبي أكبر من الواحد لغير الفراغ.
vp سرعة الضوء في المادة

تصف الفيزياء الكلاسيكية الضوء على أنه نوع من الموجات الكهرومغناطيسية والتي تنبأت معادلات ماكسويل بأن سرعتها معتمدة على ثابت العازلية ε وثابت المغناطيسية μ بالمعادلة السابقة.

بالمقابل فإن نظرة فيزياء الكم للضوء والمجال الكهرومغناطيسي في كهروديناميكا الكم (QED)، على أنها عبارة عن إثارات أو كمات من المجال الكهرومغناطيسي تدعى الفوتونات. هذه الفوتونات عبارة عن جسيمات عديمة الكتلة ووفقاً للنسبية الخاصة. هناك نظرة أبعد في كهروديناميكا الكم لاحتمال وجود كتلة للفوتونات وبالتالي تكون سرعتها معتمدة على ترددها وعلى السرعة اللامتغيرة والتي يمكن أن تكون سرعة الضوء في الفراغ هي أعلى قيمة حدية لها من النسبية الخاصة. حتى اليوم لم تلاحظ أي ظواهر تؤكذ ذلك. عملياً تم الوصول لقيم حدية عليا بشأن كتلة الفوتون وإن اختلفت من نموذج لآخر. على سبيل المثال فإن أعلى قيمة حدية من نظرية بروكا، هي حوالي 10−57 غرام؛ آلية هيغرز تعطي حداً أعظمياً تجريبياً مقداره، m ≤ 10−14 eV/c2 

(حوالى 2 × 10−47 g).

هناك سبب آخر يدعو للاعتقاد باعتمادية سرعة الضوء على تردده وهو فشل تطبيق النسبية الخاصة على القياسات الصغرية، بنفس ما تنبأت به نظريات مقترحة مثل ثقالة الكم. في 2009، وجدت مراقبة انفجارات غاما عدم وجود أي فرق في سرعة الفوتونات المختلفة الطاقة، مؤكدة صحة لاتباين-لورتنز على الأقل نزولا حتى مقياس طول بلانك. (lP = ħ'G/c3 ≈ 1.6163×10−35 م) مقسومة على 1.2.

تاريخ

لم تكن سرعة الضوء أمراً مؤكداً حتى عهد قريب، كان إمپدوقليس أول من أشار إلى محدودية سرعة الضوء، ولذلك فكان لزاماً أن يستغرق وقتاً في انتقاله. وعلى العكس من ذلك، أصر أرسطو بأن «الضوء هو تعبير عن وجود شيء ما، إلا أنه ليس بحركة».

اقترح إقليدس نظرية الإشعاع في الإبصار، (والتي روج لها كذلك بطليموس) القائلة بأن الضوء ينبعث من العين، بدلاً من دخوله العين من مصدر آخر. وباستخدام هذه النظرية، طور هيرون السكندري مقولة أن سرعة الضوء هي حتماً غير محدودة، لأن الأجرام البعيدة كالنجوم تظهر فوراً بمجرد أن نفتح أعيننا.

بداية وافق الفلاسفة المسلمون المبكرون على وجهة نظر أرسطو في أن سرعة الضوء غير محدودة. إلا أنه في عام 1021، نشر الفيزيائي المسلم، ابن الهيثم، كتاب البصريات، وفيه استخدم تجارب لدعم نظرية الولوج في الإبصار، حيث ينتقل الضوء من جرم إلى العين، مستخدماً آلات مثل كاميرا اوبسكيورا (صندوق مظلم).

الأمر الذي أدى بابن الهيثم لأن يقترح أن الضوء، لذلك، حتماً له سرعة محددة، وأن سرعة الضوء تتغير، إذ تنقص في الأجسام الأكثر كثافة. وقد جادل بأن الضوء هو “مادة محسوسة”، يتطلب انتشارها وقتاً «حتى لو كان مخفياً عن حواسنا».

ويقال أن وصول ابن الهيثم لهذه النظريات كانت خلال الأعوام التي قضاها في السجن إبان فترة الحاكم بأمر الله في مصر. استمر هذا الجدل في أوروبا والعالم الإسلامي طوال العصور الوسطى.

في القرن الحادي عشر، وافق أبو الريحان البيروني على أن الضوء له سرعة محددة ولاحظ أن سرعة الضوء تكون أعلى من سرعة الصوت.

وفي عقد 1270، أخذ ويتلو في الاعتبار احتمال أن ينتقل الضوء بسرعة غير محدودة في الفراغ وأن يبطئ في الأجسام الكثيفة. وفي تعليق على آية في ريگڤـدا في القرن الرابع عشر، من الباحث الهندي سايانا يمكن تفسيره على أنه تقدير لسرعة الضوء في اتفاق كبير مع السرعة الفعلية. وفي عام 1574، وافق الفلكي العثماني والفيزيائي تقي الدين بن معروف مع ابن الهيثم على أن سرعة الضوء ثابتة، ولكنها تتغير في الأجسام الأكثف، واقترح أن الضوء سيستغرق وقتاً طويلاً للوصول من النجوم التي تبعد ملايين الكيلومترات ليصل الأرض.في مطلع القرن السابع عشر، آمن يوهانس كپلر أن سرعة الضوء غير محدودة لأن الفراغ ليس فيه معوقات للضوء. وجادل فرانسيس بيكون أن سرعة الضوء لم تكن بالضرورة غير محدودة، إذ أن شيئاً يمكنه السفر بسرعة أعلى من أن ندركها. وقد جادل رينيه ديكارت بأنه لو كانت سرعة الضوء محدودة، فإن الشمس والأرض والقمر سيظهرون على غير خط واحد أثناء الخسوف القمري. ولما كنا لا نشاهد عدم الإتساق هذا، فقد استنتج ديكارت أن سرعة الضوء غير محدودة. وقد خمن ديكارت بأنه لو وُجـِد أن سرعة الضوء محدودة، فإن ذلك سيقوض كل نظام فلسفته!

تأثر سرعة الضوء بسرعة المصدر

نظراً لان المجرة تسير بسرعة عالية جداً ومن ضمنها الأرض والرقم الذي حسبته 5000 كيلومتر في الثانية فلو كان الضوء مستقل على الطاقة الحركية لمصدر الضوء فإن هذا يعني أن سرعة الضوء النسبية لحركة الأرض في المجرة سوف تختلف مما يعني ظهور صورة لجسم ساكن وبعيد سوف يختلف مع دوران الأرض حول نفسها وذلك لان السرعة النسبية سوف تختلف ولكن ظهور صورة الجسم في نفس المكان يعني أن الضوء يسير متأثر بسرعة المصدر.

قياسات تجريبية

الجدول التالي يبين أبرز القياسات التجريبية لإيجاد سرعة الضوء في الفراغ والهواء.

التاريخ قياسات لـ c
السنة المؤلف و الطريقة القيمة (km/s)
1675 أوول رومر و كريستيان هوغنس، أقمار المشتري 220000
1729 جيمس برادلي، زيغ  الضوء 301000
1849 هيبوليت فيزو، الإطار المسنن 315000
1862 ليون فوكو، المرآة  الدوارة 298000±500
1907 روزا و دورسي، الثوابت الكهرومغناطيسية 299710±30
1926 ألبرت ميكلسون، المرآة الدوارة 299796±4
1950 إيسن و غوردون-سميث، رنين  الفجوة 299792.5±3.0
1958 K.D. فروم، ال التداخل 299792.50±0.10
1972 إيفنسون .، الليزر تداخل 299792.4562±0.0011
1983 17th CGPM، تعريف  المتر 299792.458 (دقيق)

غلاف جوي خارج الأرض

المكونات الرئيسية للنظام الشمسي.

تعتبر عملية دراسة الأغلفة الجوية الخارجية (بالإنجليزية: Extraterrestrial atmosphere)‏ باعتبارها جانباً من جوانب علم الفلك، واحدةً من أكثر مجالات البحث نشاطاً، في أفق تحسين فهمنا للغلاف الجوي للأرض.

بالإضافة إلى الأرض، العديد من الأجسام الفلكية الأخرى في النظام الشمسي لها غلاف جوي، وتشمل هذه الأجرام جميع الكواكب العملاقة الغازية، مثل المريخ أو الزهرة أو بلوتو. كما وتمتلك العديد من الأقمار وغيرها من الأجسام السماوية الأخرى أغلفة جوية،.تماماً كما هو الشأن عند المذنبات والشمس، وفي نفس السياق هناك الكثير من الأدلة التي تشير إلى توفر كواكب من خارج المجموعة الشمسية على غلاف جوي.

إن مقارنة هذه الأغلفة مع بعضها البعض ومع الغلاف الجوي للأرض يسمح لنا بتوسيع معارفنا الأساسية بالعمليات الجوية، مثل تأثير الاحتباس الحراري والهباء الجوي وفيزياء السحب، فضلاً عن كيمياء الغلاف الجوي كيمياء الغلاف الجوي ودينامياته.

الكواكب

الكواكب الداخلية

الأرض مستبعدة من هذه المقارنة، وذلك لاكتشاف معلومات أكثر حول الغلاف الجوي للأرض، انظر غلاف الأرض الجوي.

عطاردنظرا لصغر حجم عطارد (وبالتالي انخفاض خطورته) لا يمتلك هذا الأخير ما يمكن تسميته بغلاف جوي جوهري. حيث أن غلاف عطارد الجوي هو في الواقع مجرد غلاف رقيق للغاية يتكون في الغالب من كمية صغيرة من الهيليوم وبعض من آثار الصوديوم والبوتاسيوم والأكسجين. تأتي هذه الغازات المكونة لغلاف عطارد الجوي أساسا من الرياح الشمسية، من الاضمحلال الإشعاعي، من الآثار النيزكية ومن انحلال قشرة عطارد.

الغلاف الجوي لعطارد غير مستقر ويتم تجديده باستمرار، بسبب ذراته الهاربة إلى الفضاء بسبب حرارة الكوكب.

الزهرة

صورة بالأشعة فوق البنفسجية للغلاف الجوي لكوكب الزهرة، التقطها المسبار المداري فينوس بايونير في سنة 1979.

يتكون غلاف الزهرة الجوي أساسا من ثنائي أكسيد الكربون. كما يحتوي كذلك على كميات صغيرة من النيتروجين وغيرها من العناصر النزرة، التي تشمل المركبات التي تعتمد على الهيدروجين والنيتروجين والكبريت والكربون والأكسجين. غلاف الزهرة الجوي هو أكثر سخونة وأكثر كثافة مقارنة بغلاف الأرض الجوي، على الرغم من ضحالة. في الذي تسخن فيه غازات الدفيئة الطبقة السفلى لغلاف الزهرة الجوي، فإنها تبرد الطبقة العليا، مما أدى إلى تكون طبقة الثرموسفير المضغوطة. ·

في هذا الشأن ووفقا لبعض التعاريف، فإن غلاف كوكب الزهرة لايشتمل على طبقة الستراتوسفير.

تبدأ الطبقة التروبوسفيرية من سطح الكوكب وتمتد إلى ارتفاع 65 كيلومترا (وهو الارتفاع الذي يتم فيه على الأرض الوصول إلى طبقة الميسوسفير). في أعلى طبقة التروبوسفير، تصل درجات الحرارة والضغط إلى مستويات مماثلة لمستوياتها على الأرض. تبلغ سرعة الرياح على السطح بضعة أمتار في الثانية، لكنها سرعان ما تصل إلى حدود 70 متر في الثانية أو أكثر في طبقة التروبوسفير العليا. يصل ارتفاع طبقة الستراتوسفير والميزوسفير إلى ارتفاع يتراوح ما بين 65 كم إلى 95 كم. يبدأ الثرموسفير والإكسوسفير عند ارتفاع يبلغ حوالي 95 كم وينتهي عند حدود الغلاف الجوي، في ارتفاع يتراوح ما بين 220 و 250 كم. يعادل ضغط الهواء على سطح كوكب الزهرة حوالي 92 مرة من ضغطه على الأرض. تخلق الكمية الهائلة من ثاني أكسيد الكربون في غلاف الزهرة الجوي تاثيرا قويا للاحتباس الحراري، الشئ الذي يرفع من درجة حرارة الكوكب إلى حوالي 470 درجة مئوية، ما يجعلى جوه أكثر سخونة من أي كوكب آخر في النظام الشمسي.

المريخ

الغلاف الجوي لكوكب المريخ كما يبدو من الأفق.

يتميز غلاف المريخ الجوي بكونه رقيق للغاية ويتكون أساسا من ثاني أكسيد الكربون، مع القليل النيتروجين والأرجون. متوسط ضغط السطح على المريخ هو حوالي 0.6 إلى 0.9 كيلو باسكال، مقارنة مع حوالي 101 كيلو باسكال على الأرض. ما يؤدي إلى انخفاض حراري في غلافه الجوي، وكنتيجة لذلك يبقى المريخ عرضة للموجات الحرارية القوية التي يمكنها تغيير الضغط الجوي الكلي للكوكب بنسبة تصل إلى 10 في المائة. يزيد الغلاف الجوي الرقيق من تباين درجة حرارة الكوكب. حيث أن درجات الحرارة على سطح المريخ هي متغيرة بشكل مستمر. تتراوح درجات حرارة سطح المريخ ما بين ناقص 140 درجة مئوية خلال الشتاء القطبي و20 درجة مئوية خلال الصيف.

الغلاف الجوي الكلي على سطح المريخ هو أكثر برودة وأقل غبارا وأكثر غموضا مما أشير إليه في برنامج فايكينغ لاكتشاف المريخ، مع غلاف جوي يتمسز بدرجات حرارة أكثر برودة عموما وبتركيز غبار منخفض في العقود الأخيرة مقارنة بالفترة التي درستها مهمة فايكنغ.

لا تظهر مسوحات مركبة مارس ريكونيسانس أوربيتر، التي وفرت مجموعة البيانات حول الكوكب، أي ارتفاع في متوسط درجة الحرارة الإجمالية. على الصعيد المحلي والإقليمي، تشير التغيرات في حفر طبقة ثاني أكسيد الكربون المجمد في القطب الجنوبي للمريخ الذي لوحظ بين عامي 1999 و2001 إلى أن الغطاء الجليدي القطبي الجنوبي آخذ في التقلص. كما تشير الملاحظات الأخيرة إلى أن القطب الجنوبي للمريخ يستمر في الذوبان.

يقول مايكل مالين (عالم فلك وفضاء والرئيس التنفيذي لشركة مالين لعلوم الفضاء، الذي ساهمت كاميراته بشكل كبير في استكشاف المريخ) في هذا الشأن: «أنه الآن يتبخر بمعدل مذهل (يقصد المريخ) ». حيث تنمو الحفر في جليد المريخ بشكل متزايد وبوثيرة تصل إلى نحو 3 أمتار (9.8 قدم) سنويا. يقول مايكل مالين أن الظروف على سطح المريخ لا تؤدي حاليا إلى تشكيل جليد جديد. نتيجة لذلك اقترح موقع على شبكة الإنترنت أن هذا يشير إلى «التغير المستمر للمناخ» على المريخ. في نفس الوقت تشير دراسات متعددة إلى أن هذا قد يكون نتيجة لظاهرة محلية فقط بدلا من أن يكون من ظاهرة شاملة. يعتقد كولن ويلسون، أن هذه الاختلافات الملحوظة ناتجة عن الاختلافات في مدار المريخ. في المقابل يعتقد ويليام فيلدمان أن الاحترار على المريخ قد يكون بسبب خروج هذا الكوكب من العصر الجليدي. يذكر علماء آخرون أن الاحترار قد يكون ناتجا عن تغيرات الوضاءة الناجمة عن العواصف الترابية. تتوقع الدراسات أن كوكب المريخ يمكن أن يستمر في الاحترار، نتيجة الارتجاع الإيجابي.

الكواكب الغازية

تعتبر الكواكب الخارجية الأربعة للنظام الشمسي ككواكب غازية عملاقة. هناك بعض القواسم المشتركة بين هذه الكواكب الأربعة في مايخص أغلفتها الجوية. جميعها تمتلك غلافا جويا يتكون أساسا من الهيدروجين والهيليوم التي تختلط في السائل الداخلي بواسطة ضغوط أعلى من النقطة الحرجة، بحيث لا يكون هناك حدود واضحة بين الغلاف الجوي وجسم الكوكب.

أجسام أخرى من النظام الشمسي

الأقمار الطبيعيةمن المعروف جدا أن عشرة من الأقمار الطبيعية المتعددة في النظام الشمسي لديها غلاف جوي: أوروبا، آيو، كاليستو، إنسيلادوس، غانيميد، تيتان، ريا، ديون، ترايتون والقمر. تمتلك كل من غانيميد وأوروبا أغلفة جوية غنية جدا بالأكسجين، الذي يعتقد أنه ناتج عن الإشعاع الذي يفصل الهيدروجين والأكسجين من جليد الماء على سطح هذه الأقمار. في المقابل يمتلك قمر آيو غلافا جويا رقيقة للغاية يتألف أساسا من ثنائي أكسيد الكبريت (SO2)، الناتج عن البركانية والتسامي الحراري لترسبات ثاني أكسيد الكبريت الناجم عن أشعة الشمس. كما ان الغلاف الجوي لإنسيلادوس هو الآخر رقيق للغاية ومتغير، يتالف أساسا من بخار الماء والنيتروجين والميثان وثاني أكسيد الكربون الصادرة من المناطق الداخلية للقمر من خلال البراكين الباردة. كما يعتقد أن الغلاف كاليستو الجوي الرقيق للغاية مكون من ثاني أكسيد الكربون يتم تجديده انطلاقا من الرواسب السطحية من خلال عملية التسامي الحراري.

ليست هناك تعليقات:

إرسال تعليق

ج9وج10.[ معجم البلدان - ياقوت الحموي]

  ج9. [ معجم البلدان - ياقوت الحموي] كندوان بالضم وبعد الدال واو من نواحي مراغة تذكر مع كرم يقال كرم وكندوان كندير اسم جبل في قول الأ...